

Challenges for Planetary Rover Navigation

Overview

Planetary rover design has unique requirements

- Environmental
- CPU and sensor limitations on control algorithms
- Style of commanding
- Fault Responses

Case study: MER solution

- Mars Equatorial solar-powered environment
- Single CPU impact on surface autonomy
- Once-per-day commanding
- Stop and wait vs autonomous responses

Challenges for future missions

Environmental Constraints

- Terrestrial rover design has tremendous flexibility
 - Wheels, legs, treads
 - High power available via human-provided refueling sources
- Planetary rovers have to rely on low power and KISS (Keep It Simple, Somebody) design
 - More motors or more actuators are more things that can go wrong
 - You get what you get: mission survivability trumps robotic capability
- Low power means slow driving and slow processing

CPU and Sensor Limitations

- Terrestrial vehicles use state of the art CPUs and sensors
- Rover equipment must survive the cruise and surface environments
 - Proven, space-qualified devices are typically a decade or more out of date
 - CPUs are much slower: Sojourner 0.1 MHz, MER 20 MHz
 - Sensors can be much slower and are more limited in number
- Algorithms must be tailored to the current system
 - Visual Odometry example: slow image acquisition time dictates large distance between steps, necessitating more robust tracking software than needed for terrestrial operations
 - Hazard Detection example: plan to use the minimum number of images needed to ensure proper obstacle detection

Mobility Autonomy Design Space

Style of Commanding

Direct teleoperation does not work (except on the Moon)

- Typically only one chance to send commands each day
- Send a series of conditional, event-driven commands

Goal designation is different:

On Earth, a goal might be set using a live beacon, or GPS coordinates

Planetary rover Goal designation has multiple error sources:

- Target specification error: locating the rover with respect to the goal at its initial position
 - Stereo range resolution dominates in rover-taken images, initial rover localization and map projection resolution dominate in infrequently-taken orbital images
- Ensuring the proper goal has been reached at the end
 - Must either track the goal or carefully update rover position estimates along the way

Fault Responses

- There is no kill switch
 - The rover has to be programmed to be more conservative
- Some faults are worse than others
 - Surface operations are different than cruise operations
 - Fault behavior can be tailored to the current terrain
- The command language needs to be designed to allow autonomous fault detection and recovery
 - Must allow the system to be retuned for different types of terrain; we don't have smart enough sensing to autonomously switch behaviours based on terrain yet
 - Adding contingencies into the plan for benign or expected faults will improve overall mission return
- Plan for degraded operations when components fail

MER Design due to Environment and KISS

- Low power: Nominal mission planned to succeed even with limited power
- Slow driving: Wheel motor gear ratios were determined by the needs of worst-case climbing
 - So it can climb over obstacles, but its top speed is limited even in benign terrains
- Limited sensing
 - No camera can see the middle wheels or under the rover
 - A small number of cameras was chosen to minimize the power required and system integration complexity

MER CPU and Sensor Limitations

- Slow processing: we use the same CPU for Launch, Cruise, Entry/Descent/Landing, and Surface operations
 - Even though surface operations do not require the same robustness as the other phases
 - CPU speed also limited by available power
- Slow sensing: Cameras, motors, CPU must survive extreme temperatures and use minimal power
 - Cameras take excellent images, but 10 seconds are needed just to transfer a stereo pair of 1 Megapixel images into RAM
- This impacts the design of autonomy algorithms and puts constraints on their use during operations

Most MER Autonomy

MER Style of Commanding

- A series of event-driven conditional commands is updated each drive day
- Drive goals are normally specified using X,Y,Z
 - Short range drive goals (< 20 m) from onboard Navcam range data
 - Long range drive goals from Pancam range data or orbital images
- Only goals that allow for accumulated position estimation error are selected
 - Position error can be minimized by enabling Visual Odometry
- Visual Target Tracking can eliminate target specification error
 - Constantly re-estimating target location visually during a drive

MER Fault Responses

- Two classes of driving faults: Goal and Motion Errors
 - Goal Errors simply indicate the planned location wasn't achieved; the vehicle is still safe
 - Motion Errors indicate some system parameter is out of range, e.g.,
 motor current, vehicle tilt
 - But ranges are selected to ensure overall vehicle safety; even if "out of range", you can still have sufficient power and communications
- Command sequences can behave conditionally on fault type
 - The more time you have, the more alternatives you can plan for
- Unplanned faults leave the vehicle in a safe state
- Both MER vehicles are dealing with failed motors, yet continue to perform useful science

Spirit Finds Salts by Home Plate A-721

Future Missions: Focus on Telemetry

- Rover telemetry requirements differ from terrestrial systems
- Make drive behavior reproducible
 - Make sure you provide enough data to understand vehicle behaviour
 - Include occasional images of tracks

Priority matters

 Bandwidth may be limited, so high level summaries and error status are given the highest priority

Redundancy helps

 Telemetry transmission may be interrupted or lost at any point, so there may only be partial data

MER Partial Data

- Each rover generates dozens or even hundreds of separate pieces of data each sol
- Not all generated data is received at Earth the same day
 - There is limited bandwidth throughout the communication chain
 - (rover -> orbiter -> deep space network)
 - Bad weather at the Deep Space Network antenna could corrupt data
- Certain information is replicated in many forms
 - E.g., rover X,Y,Z position appears in EH&A, certain EVRs, and multiple data products
- Over 600 distinct fields are automatically extracted from multiple sources and given a unique name
 - Users generally do not care exactly how the information was collected (I.e., the source of the data), but they do want to see every value downlinked
 - Example: Course plot

Telemetry Needs

Future: Resource Modeling

- Any autonomy technology transitioning to flight must include a prediction of its CPU resource use as a function of sensed data size (e.g., image resolution)
 - RAM, CPU time
- Rover operations team will need to model overall system resource use during each day:
 - Power
 - Time required
 - Data Volume

Future: Robust Terrain Adaptation

- Geometric hazard avoidance and basic Visual Odometry have already been proven useful by MER
- Long distance autonomy will require better adaptation to novel terrain
 - MER had to be manually configured for each terrain type, even within a single drive
 - Autonomous adaptation to local terrain would improve long-range performance
 - Based on actual slip measurements, terrain geometry, terrain texture, possibly onboard science analysis

Pre-drive Annotation: A-436

Opportunity Drive Modes in first 410 Sols

Data from rover's onboard position estimate

Opportunity Tilt History through Sol 380

Future: Focus on target approach

- Some of the most interesting science results derive from in situ observations by instruments mounted on manipulator arms.
- MER demonstrated components of single sol instrument placement
 - Visual Odometry, Visual Servoing, IDD (arm) Autoplacement
- But future goal specifications should consider not only X,Y,Z
 position, but also kinematic constraints on how the target will
 be sampled or studied upon arrival.

Conclusion

- Planetary robots can take advantage of many new robotic technologies
 - But only if they are tailored to the mission constraints
- Faster processors would improve autonomy behavior, but not by orders of magnitude
 - Mechanical and other sensor bottlenecks quickly come into play
- More focus needed on reducing the number of days spent at a science feature
 - Most time is spent performing in situ work at science targets,
 efficiency improvements there will have a large impact on overall mission science return

BACKUP SLIDES

MER Downlink Needs

- Driving and operating the arm on the Mars Exploration Rovers daily requires a rapid understanding of what happened during the previous day.
- This immediate ("tactical") analysis must be performed:
 - Even when only a partial view of what happened is available,
 - By people who may be working over a slow remote connection,
 - Quickly enough to be useful to the current day's planning activities.
- Long term ("strategic") analyses are also needed:
 - To understand the recent multi-day history of a stalled actuator
 - To monitor overall vehicle health during the entire mission

Opportunity Drive through Sol 410

NASA/JPL/MSSS

Driving Modes:

Blind

Autonav

Visodom

Opportunity Drive to Endurance Crater

Spirit Drive through Sol 418

Spirit Drive History through Sol 588

Drive Constraints

- Typically only enough power to drive 4 hours/day
- Rover generally sleeps from 1700 0900; humans plan next day's activities while it sleeps, e.g. human terrain assessment enables a blind drive
- A single VisOdom or AutoNav imaging step takes between 2 and 3 minutes (20MHz CPU, 90+ tasks)
- Onboard terrain analysis only performs geometric assessment; humans must decide when to use VisOdom instead of/in addition to AutoNav
- Placement of Arm requires O(10cm) precision vehicle positioning, often with heading constraint

A-436: Exercising 3 Drive Modes

- Here's an example of a sol that used 3 drive moves
- The drive plan for Spirit's Sol 436 was:
 - Back up 5m cross-slope
 - Drive upslope with VisOdom using 2 waypoints
 - Run Obstacle Check in parallel
 - Bear right and run AutoNav (no more VisOdom)
 to climb a reduced slope in unseen area
- One last note says:
 - This avoids the 25deg slopes along the front ledge on the upslope

Planned vs. Actual Drive: A-436

Ensuring Vehicle Safety: Keep-out Zones

From Sol 249-265, Opportunity kept sliding back into Wopmay; high slip, buried rocks, not enough uphill progress

Each time VisOdom noticed the failure to make progress and prevented driving into it.

Special Effects: Opportunity at Endurance

Challenges for Planetary Rover Navigation

34

Summary

- Visual Odometry has proven a highly effective tool for driving in high-slip areas
- Tangible benefits:
 - Increased Science Return
 - Provided robust mid-drive pointing
 - Enabled difficult approaches to targets in fewer Sols
 - Improved Rover Safety
 - Keep-out zones
 - Slip checks

Autonomy Tradeoffs

Benefits:

- Adapts to current vehicle state
- Can drive into unknown areas
- Faster planning time
- Disadvantages:
 - Can be order of magnitude slower than Directed
 - VisOdom cameras need to be manually pointed
 - VisOdom-only mode needs manual Keep-out zones
 - Only geometric terrain classification; cannot predict high slip areas
 - Unknown use of resources and final state

Directed Driving Tradeoffs

Benefits:

- Fastest execution time
- More "predictable" final state
- Strategies may be adapted daily
- Disadvantages:
 - Can only drive as far as you can see
 - Needs much more planning effort
 - Limited terrain adaptability; yaw knowledge only
 - Cannot plan mid-drive precision imaging with slip

Future Work

- Speed up onboard processing (e.g., less precise slip check)
- Take advantage of new software:
 - Global path planner Field D*
 - IDD Auto-placement (Go and Touch)
 - Visual Servoing (Visual Terrain Tracking)
 - Autonomous Science (Dust Devil and Cloud Detection)
- Autonomous Terrain Classification
- Ground-based drive plan assessment allowing for uncertainties (e.g., slip)
- Precision vehicle and instrument placement
- Paradigms for sequence re-use